دسته بندی های ارشیو: علوم پایه

تحلیل آماری

 

 بر اساس کلاس سرکار خانم دکتر نازنین پیله وری و مبتنی بر تدریس استاد ارجمند جناب آقای دکتر پیدایی

نگاه کوتاه

 برگرفته از سایت پژوهشکده مدیریت استراتژیک

تحلیل آماری چیست؟

همه ما در زندگی خود ار آمار استفاده می­‌کنیم و در تصمیم­‌گیری‌های خرد و کلان خود، از آن بهره می­‌جوییم. برای نمونه، ممکن است، چند بار تجربه خوبی از تجارت با تاجر قد بلند نداشته باشید، از آن به بعد ناخودآگاه ممکن است در برخورد تجاری با تاجران قد بلند، محتاط عمل کنید. به عنوان مثال دیگر، ممکن است شخصی را مشاهده کنیم که در قرعه‌کشی بانکی شرکت کرده و مقدار زیادی پول برنده شده است، او از این به بعد سعی می‌کند  در بیشتر قرعه­‌کشی‌­ها شرکت کند. و یا شاید با در رفتار برخی از افراد نسبت دادن خصوصیت یک یا چند نفر به  تمام همشهری های آنان مشاهده شود. در این گونه مثال‌ها یک فرد بر اثر یک یا چند تجربه خود به نتیجه‌ای می‌رسد.  و این عمل وی در واقع استفاده از نوعی روش آماری است. روشی که پدیده‌ها را کمٌی کرده و یک نتیجه از آن می‌گیرد (در گذشته چند بار در یک موقعیت چنین امری اتفاق افتاده پس در در آینده اگر در این موقعیت قرار گرفتم، فلان کار را می‌کنم ،حال تصور کنید که از این روش آماری به صورت منسجم‌تری استفاده شود. برای نمونه فرض کنید یک فرد با ۳۰۰ تاجر قدبلند در یک شهر تجارت کند و تجربه وی از این تجارت ناخوشایند باشد. حال دادن عدد یک مفهوم و یک نتیجه مفید پیش روی فرد می‌گذارد و آن این‌که بهتر است در آن شهر و وقتی با تاجر قدبلند شماره ۳۰۱ ملاقات می‌کند، محتاط‌تر عمل کند و یا اصلا با او معامله نکند.

با این روش احتمال تکرارپذیری نتایج را بالا می برد. تکرارپذیری یکی از اصول مهم روش علمی است

آمار، علم استفاده از اعداد و کمیت­‌ها در راستای ایجاد مفهوم و نتیجه­‌گیری­‌هاست. به وسیله روش­‌ها و تکنیک­‌های آماری می‌­توان به کمی‌­سازی  مفاهیم مختلف پرداخت، چند مفهوم را با هم مقایسه نمود و به هر مفهوم رتبه و معنای خاص به خود را بخشید.کمی­‌سازی و دادن عدد به مفاهیم، فرض اصلی و اولیه علم آمار است. و زمانی که این امر به درستی تحقق یابد، می­‌توان نتیجه درست از مفاهیم آماری گرفت.
مطلب دیگری که باید در مورد آمار و تکنیک‌های آماری دانست، عمومیت آن‌­ها و اشتراک بین علوم می‌باشد. بدین ترتیب که با دانستن تکنیک­‌های پرکاربرد آماری، می‌توان تا حد زیادی تحلیل آماری در علوم مختلف را فراگرفت. برای نمونه تصور کنید که یک خودنویس می‌تواند همه چیز بنویسد. از نوشته‌های ادبی تا تخیلی از خط‌ کشیدن بر روی صفجه توسط یک کودک و یا کشیدن نقاشی بوسیله یک هنرمند حرفه‌ای. در این مثال، برای استفاده از خودنویس، تنها نیاز است که دانست آن  را چگونه در دست گرفت. حال بیایید خودنویس را با تکنیک‌های آماری، یکسان در نظر بگیریم و دانستن تکنیک‌های آماری را به دانستن چگونگی در دست گرفتن خودنویس تشبیه کنیم. به بیان ساده‌ می‌توان گفت، تکنیک‌های آماری در علوم مختلف  مورد استفاده قرار می‌گیرند و غالبا استفاده عمومی دارند (مثل یک خودنویس)  اگر شما این تکنیک‌ها را فرا بگیرید (بتوانید خودنویس را در دست بگیرید) خواهید توانست از آن‌ها در راستای کار خود بهره مناسب را ببرید.

رئوس مطالب

 علم آمار-آمار استنباطی-آمار توصیفی-دیاگرام آمار تحلیلی و استنباطی-روش های نمونه گیری احتمالی-روش های نمونه گیری غیراحتمالی-انواع مقیاس کمی ، کیفی ،اسمی ، ترتیبی ، نسبی ، فاصله ای-ریاضیات مطالعه توصیفی داده های طبقه بندی نشده  کل جامعه آماری – دیاگرام ریاضیات  مرتبط با مطالعه استنباطی داده های طبقه بندی نشده  نمونه آماری- دیاگرام تناضر ریاضی فضای نمونه و تعمیم آن به جامعه آماری -توزیع نرمال – قضیه حد مرکزی – تحلیل انحراف معیاردرتوزیع نرمال – نمره معیار –  دیاگرام رسیدن از آماره به پارامتر با اطلاعات حاصل از نمونه – جدول احتمال توزیع نرمال استاندارد – تخمین فاصله ای در جامعه آماری – تمرین از توزیع نرمال در جامعه آماری با انحراف معیار معلوم – تمرین توزیع نرمال در جامعه آماری با درصد اطمینان های ۹۰ ، ۹۵ ، ۹۹ درصد – توزیع تی-استیودنت – تمرین توزیع تی  در جامعه آماری با انحراف معیار نامعلوم – فرمول توزیع نرمال در دو جامعه معلوم  –  فرمول توزیع  تی در دو جامعه نا معلوم  با انحراف معیار های برابر – فرمول توزیع نرمال در دو جامعه نا معلوم  با انحراف معیار های نابرابر – تمرین جامعه های معلوم و نامعلوم – فرمول تخمین فاصله ای نسبت موفقیت جامعه – فرمول های روش های تعیین حجم نمونه به همراه تمرین – جدول مورگان – آزمون فرضیه های آماری – سطح معنی داری – خطاهای آماری با توجه به فرضیه پژوهش – مراحل عمومی آزمون فرضیه های آماری – آزمون فرضیه آماری میانگین دو جامعه – آزمون مقایسه زوجها – آزمون فرضیه آماری نسبت موفقیت در جامعه – جدول سطح زیر منحنی توزیع کای دو – آزمون فرضیه آماری برای واریانس جامعه – رگرسیون – نمودار پراکندگی  – آزمون همبستگی پیرسون – ضریب همبستگی رتبه ای اسپیرمن

مرور برخی مباحث ریاضیات مهندسی

نگاه کوتاه

ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد

صفحه‌ای از کتاب خوارزمی

ریاضیات (در قدیم[نیازمند منبع]، هم‌چنین: اِنگارِش[۱]) را بیش‌تر دانش بررسی کمیتها و ساختارها و فضا و دگرگونی (تغییر) تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم (دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است). با اینکه ریاضیات از علوم طبیعی به شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند بیشتر از دانش‌های طبیعی به‌ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کنند، به‌طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی ریاضی‌دانان گاه به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها می‌پردازند.

تاریخچه

مصریان باستان، بیش از ۵ هزار سال پیش، برای اندازه‌گیری و نقشه‌برداری زمین و ساختن اهرام با دقت بسیار بالا، از حساب و هندسه استفاده می‌کردند. علم حساب با اعداد و محاسبه سر و کار دارد. در حساب، چهار عمل اصلی عبارتند از: جمع، تفریق، ضرب و تقسیم. هندسه علم مطالعه خط‌ها، زاویه‌ها، شکل‌ها، و حجم‌ها است. یونانی‌هایی چون اقلیدس، حدود ۲۵۰۰ سال قبل، بیشتر قوانین اصلی هندسه (قضایای هندسه) را تعیین کردند. جبر نوعی خلاصه‌نویسی ریاضیات است که در آن برای نشان دادن کمّیت‌های نامعلوم، از علائمی چون x و y استفاده می‌شود. این علم را نیز دانشمندان ایرانی، حدود ۱۲۰۰ سال قبل توسعه دادند. حساب، هندسه و جبر، پایه‌های ریاضیات هستند.

ریاضیات نوعی زبان علمی است. مهندسان، فیزیکدانان، و سایر دانشمندان، همگی از ریاضیات در کارهایشان استفاده می‌کنند. سایر کارشناسان که به مطالعه اعداد، کمّیت‌ها، شکل‌ها و فضا به‌شکل محض علاقه دارند، ریاضیات محض (غیرکاربردی) را به کار می‌گیرند. نظریه اعداد که شامل مطالعه اعداد درست و نحوه عمل آنهاست، شاخه‌ای از ریاضیات محض به شمار می‌آید. در دنیای جدید، ریاضیات یکی از عناصر کلیدی علوم الکترونیک و رایانه به‌شمار می‌رود.

کمیت

مجموعه، رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد حسابی، اعداد صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگان‌ها، هشت‌گان‌ها، شانزدگان‌ها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)، اعداد فوق حقیقی (Hyperreal number)، اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابت‌های ریاضی، پایه

ساختار

Elliptic curve simple.png Group diagram d6.svg
جبر مجرد نظریه اعداد نظریه گروه‌ها
Torus.jpg MorphismComposition-01.png Lattice of the divisibility of 60.svg
توپولوژی نظریه مدول‌ها نظریه ترتیب

جبر مجرد، نظریه اعداد، هندسه جبری، نظریه گروه‌ها، مونوئیدها، آنالیز ریاضی، آنالیز تابعی، توپولوژی، جبر خطی، نظریه گراف، جبر عمومی، نظریه مدول‌ها، نظریه ترتیب، [[نظ

فضا

Torus.jpg Pythagorean.svg Taylorsine.svg Osculating circle.svg Koch curve.svg
توپولوژی هندسه مثلثات هندسه دیفرانسیل هندسه برخال‌ها

توپولوژی، هندسه، مثلثات، هندسه جبری، هندسه دیفرانسیل، توپولوژی دیفرانسیل، توپولوژی جبری، جبر خطی، هندسه برخال‌ها، متری

تغییر

36 \div 9 = 4 Integral as region under curve.png Vectorfield jaredwf.png \int 1_S\,d\mu=\mu(S)
حساب حسابان حساب برداری آنالیز ریاضی
\frac{d^2}{dx^2} y = \frac{d}{dx} y + c Limitcycle.jpg LorenzAttractor.png
معادلات دیفرانسیل سیستم‌های دینامیکی نظریه آشوب

حساب، حسابان، حساب برداری، آنالیز ریاضی، معادلات دیفرانسیل، سیستم‌های دینامیکی، نظریه آشوب، فهرست تابع‌ها

پایه‌ها و روش‌های ریاضیات

فلسفه ریاضیات، شهودگرایی، ساخت‌گرائی، مبانی ریاضیات، نظریه مجموعه‌ها، منطق نمادی، نظریه مدل، نظریه رسته‌ها، منطق ریاضی، ریاضیات معکوس، جدول نمادهای ریاضی

ریاضیات گسسته

[1,2,3][1,3,2]
[2,1,3][2,3,1]
[3,1,2][3,2,1]
Venn A intersect B.svg DFAexample.svg Caesar3.svg 6n-graf.svg
ترکیبیات نظریه شهودی مجموعه‌ها نظریه رایانش رمزنگاری نظریه گراف

ترکیبیات، نظریه شهودی مجموعه‌ها، نظریه رایانش، رمزنگاری، نظریه گراف

ریاضیات کاربردی

فیزیک ریاضی، مکانیک، مکانیک سیالات، آنالیز عددی، بهینه‌سازی، احتمالات، آمار، اقتصاد ریاضی، ریاضیات مالی، نظریه بازی‌ها، ریاضیات زیستی، رمزنگاری، نظریه اطلاعات

گفتاورد (نقل قول)

برتراند راسل زمانی که دربارهٔ روش بُنداشتی (اصل موضوعی) سخن می‌گفت که در آن برخی ویژگی‌های یک ساختار (که چیزی از آن نمی‌دانیم) فرض می‌شود و پیامدهای این فرض از راه منطق نتیجه‌گیری می‌شود گفت:

ریاضیات را می‌توان رشته‌ای تعریف کرد که در آن نه معلوم است از چه سخن می‌گوییم و نه می‌دانیم آنچه می‌گوییم صحت دارد.

ما در ریاضیات مطالب را نمی‌فهمیم، بلکه تنها به آنها عادت می‌کنیم.

ریاضیات گسسته

نگاه کوتاه

ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد

صفحه‌ای از کتاب خوارزمی

ریاضیات (در قدیم[نیازمند منبع]، هم‌چنین: اِنگارِش[۱]) را بیش‌تر دانش بررسی کمیتها و ساختارها و فضا و دگرگونی (تغییر) تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم (دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است). با اینکه ریاضیات از علوم طبیعی به شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند بیشتر از دانش‌های طبیعی به‌ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کنند، به‌طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی ریاضی‌دانان گاه به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها می‌پردازند.

تاریخچه

مصریان باستان، بیش از ۵ هزار سال پیش، برای اندازه‌گیری و نقشه‌برداری زمین و ساختن اهرام با دقت بسیار بالا، از حساب و هندسه استفاده می‌کردند. علم حساب با اعداد و محاسبه سر و کار دارد. در حساب، چهار عمل اصلی عبارتند از: جمع، تفریق، ضرب و تقسیم. هندسه علم مطالعه خط‌ها، زاویه‌ها، شکل‌ها، و حجم‌ها است. یونانی‌هایی چون اقلیدس، حدود ۲۵۰۰ سال قبل، بیشتر قوانین اصلی هندسه (قضایای هندسه) را تعیین کردند. جبر نوعی خلاصه‌نویسی ریاضیات است که در آن برای نشان دادن کمّیت‌های نامعلوم، از علائمی چون x و y استفاده می‌شود. این علم را نیز دانشمندان ایرانی، حدود ۱۲۰۰ سال قبل توسعه دادند. حساب، هندسه و جبر، پایه‌های ریاضیات هستند.

ریاضیات نوعی زبان علمی است. مهندسان، فیزیکدانان، و سایر دانشمندان، همگی از ریاضیات در کارهایشان استفاده می‌کنند. سایر کارشناسان که به مطالعه اعداد، کمّیت‌ها، شکل‌ها و فضا به‌شکل محض علاقه دارند، ریاضیات محض (غیرکاربردی) را به کار می‌گیرند. نظریه اعداد که شامل مطالعه اعداد درست و نحوه عمل آنهاست، شاخه‌ای از ریاضیات محض به شمار می‌آید. در دنیای جدید، ریاضیات یکی از عناصر کلیدی علوم الکترونیک و رایانه به‌شمار می‌رود.

کمیت

مجموعه، رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد حسابی، اعداد صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگان‌ها، هشت‌گان‌ها، شانزدگان‌ها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)، اعداد فوق حقیقی (Hyperreal number)، اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابت‌های ریاضی، پایه

ساختار

Elliptic curve simple.png Group diagram d6.svg
جبر مجرد نظریه اعداد نظریه گروه‌ها
Torus.jpg MorphismComposition-01.png Lattice of the divisibility of 60.svg
توپولوژی نظریه مدول‌ها نظریه ترتیب

جبر مجرد، نظریه اعداد، هندسه جبری، نظریه گروه‌ها، مونوئیدها، آنالیز ریاضی، آنالیز تابعی، توپولوژی، جبر خطی، نظریه گراف، جبر عمومی، نظریه مدول‌ها، نظریه ترتیب، [[نظ

فضا

Torus.jpg Pythagorean.svg Taylorsine.svg Osculating circle.svg Koch curve.svg
توپولوژی هندسه مثلثات هندسه دیفرانسیل هندسه برخال‌ها

توپولوژی، هندسه، مثلثات، هندسه جبری، هندسه دیفرانسیل، توپولوژی دیفرانسیل، توپولوژی جبری، جبر خطی، هندسه برخال‌ها، متری

تغییر

36 \div 9 = 4 Integral as region under curve.png Vectorfield jaredwf.png \int 1_S\,d\mu=\mu(S)
حساب حسابان حساب برداری آنالیز ریاضی
\frac{d^2}{dx^2} y = \frac{d}{dx} y + c Limitcycle.jpg LorenzAttractor.png
معادلات دیفرانسیل سیستم‌های دینامیکی نظریه آشوب

حساب، حسابان، حساب برداری، آنالیز ریاضی، معادلات دیفرانسیل، سیستم‌های دینامیکی، نظریه آشوب، فهرست تابع‌ها

پایه‌ها و روش‌های ریاضیات

فلسفه ریاضیات، شهودگرایی، ساخت‌گرائی، مبانی ریاضیات، نظریه مجموعه‌ها، منطق نمادی، نظریه مدل، نظریه رسته‌ها، منطق ریاضی، ریاضیات معکوس، جدول نمادهای ریاضی

ریاضیات گسسته

[1,2,3][1,3,2]
[2,1,3][2,3,1]
[3,1,2][3,2,1]
Venn A intersect B.svg DFAexample.svg Caesar3.svg 6n-graf.svg
ترکیبیات نظریه شهودی مجموعه‌ها نظریه رایانش رمزنگاری نظریه گراف

ترکیبیات، نظریه شهودی مجموعه‌ها، نظریه رایانش، رمزنگاری، نظریه گراف

ریاضیات کاربردی

فیزیک ریاضی، مکانیک، مکانیک سیالات، آنالیز عددی، بهینه‌سازی، احتمالات، آمار، اقتصاد ریاضی، ریاضیات مالی، نظریه بازی‌ها، ریاضیات زیستی، رمزنگاری، نظریه اطلاعات

گفتاورد (نقل قول)

برتراند راسل زمانی که دربارهٔ روش بُنداشتی (اصل موضوعی) سخن می‌گفت که در آن برخی ویژگی‌های یک ساختار (که چیزی از آن نمی‌دانیم) فرض می‌شود و پیامدهای این فرض از راه منطق نتیجه‌گیری می‌شود گفت:

ریاضیات را می‌توان رشته‌ای تعریف کرد که در آن نه معلوم است از چه سخن می‌گوییم و نه می‌دانیم آنچه می‌گوییم صحت دارد.

ما در ریاضیات مطالب را نمی‌فهمیم، بلکه تنها به آنها عادت می‌کنیم.

آمار و احتمالات

نگاه کوتاه

آمار

به مجموعهٔ داده‌های عددی مربوط به یک موضوع (معمولاً مهم)، مانند جمعیت، متوفیات، میزان تجارت داخلی یا خارجی، دما یا بارش ماهیانه و غیر گفته می‌شود. آمار را باید علم و عمل استخراج، بسط، و توسعهٔ دانشهای تجربی انسانی با استفاده از روش‌های گردآوری، تنظیم، پرورش، و تحلیل دادههای تجربی (حاصل از اندازه‌گیری و آزمایش) دانست. زمینه‌های محاسباتی و رایانه‌ای جدیدتری همچون یادگیری ماشینی، و کاوش‌های ماشینی در داده‌ها، در واقع، امتداد و گسترش دانش گسترده و کهن از آمار به عهد محاسبات نو و دوران اعمال شیوه‌های ماشینی در همه‌جا می‌باشد. علم آمار، علم فن فراهم کردن داده‌های کمّی و تحلیل آن‌ها به منظور به دست آورن نتیایجی که اگرچه احتمالی است، اما در خور اعتماد است.

در صورتی که شاخه‌ای علمی مد نظر نباشد، معنای آن، داده‌هایی به‌شکل ارقام و اعداد واقعی یا تقریبی است که با استفاده از علم آمار می‌توان با آن‌ها رفتار کرد و عملیات ذکر شده در بالا را بر آن‌ها انجام داد. بیشتر مردم با کلمه آمار به مفهومی که برای ثبت و نمایش اطلاعات عددی به کار می‌رود آشنا هستند؛ ولی این مفهوم منطبق با موضوع اصلی مورد بحث آمار نیست. آمار عمدتاً با وضعیتهایی سر و کار دارد که در آنها وقوع یک پیشامد به طور حتمی قابل پیش بینی نیست. اسنتاجهای آماری غالباً غیر حتمی اند، زیرا مبتنی بر اطلاعات ناکاملی هستند. در طول چندین دهه آمار فقط با بیان اطلاعات و مقادیر عددی درباره اقتصاد، جمعیت‌شناسی و اوضاع سیاسی حاکم در یک کشور سر و کار داشت. حتی امروز بسیاری از نشریات و گزارشهای دولتی که توده‌ای از آمار و ارقام را در بردارند معنی اولیه کلمه آمار را در ذهن زنده می‌کنند. اکثر افراد معمولی هنوز این تصویر غلط را درباره آمار دارند که آن را منحصر به ستونهای عددی سرگیجه آور و گاهی یک سری شکلهای مبهوت کننده می‌دانند؛ بنابراین، یادآوری این نکته ضروری است که نظریه و روشهای جدید آماری از حد ساختن جدولهای اعداد و نمودارها بسیار فراتر رفته‌اند. آمار به عنوان یک موضوع علمی، امروزه شامل مفاهیم و روشهایی است که در تمام پژوهشهایی که مستلزم جمع‌آوری داده‌ها به وسیله یک فرایند آزمایش و مشاهده و انجام استنباط و نتیجه‌گیری به وسیله تجزیه و تحلیل این داده‌ها هستند اهمیت بسیار دارند.

علم آمار، مبتنی است بر دو شاخه آمار توصیفی و آمار استنباطی. در آمار توصیفی با داشتن تمام اعضا جامعه به بررسی خصوصیت‌های آماری آن پرداخته می‌شود در حالی که در آمار استنباطی با بدست آوردن نمونه‌ای از جامعه که خصوصیات اصلی جامعه را بیان می‌کند در مورد جامعه استباط آماری انجام می‌شود. در نظریهٔ آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریهٔ احتمالات مدل‌سازی می‌شوند. در این علم، مطالعه و قضاوت معقول در بارهٔ موضوع‌های گوناگون، بر مبنای یک نمونه انجام می‌شود و قضاوت در مورد یک فرد خاص، اصلاً مطرح نیست.

از جملهٔ مهم‌ترین اهداف آمار، می‌توان تولید «بهترین» اطّلاعات از داده های موجود و سپس استخراج دانش از آن اطّلاعات را ذکر کرد. به همین سبب است که برخی از منابع، آمار را شاخه‌ای از نظریه تصمیم‌ها به شمار می‌آورند.

از طرف دیگر می‌توان آن را به دو بخش آمار کلاسیک و آمار بیز تقسیم‌بندی کرد. در آمار کلاسیک، که امروزه در دانشگاه‌ها و دبیرستان‌ها تدریس می‌گردد، ابتدا آزمایش و نتیجه را داریم و بعد بر اساس آن‌ها فرض‌ها را آزمون می‌کنیم. به عبارت دیگر ابتدا آزمایش انجام می‌شود و بعد فرض آزمون می‌گردد. در آمار بیزی ابتدا فرض در نظر گرفته می‌شود و داده‌ها با آن مطابقت داده می‌شوند به عبارت دیگر در آمار بیزی یک پیش توزیع داریم-توزیع پیشین- و بعد از مطالعه داده‌ها و برای رسیدن به آن توزیع پیشین، توزیع پسین را در نظر می‌گیریم.
مطالعات تجربی و مشاهداتی هدف کلی برای یک پروژه تحقیقی آماری، بررسی حوادث اتفاقی بوده و به ویژه نتیجه‌گیری روی تأثیر تغییرات در ارزش شاخص‌ها یا متغیرهای غیر وابسته روی یک پاسخ یا متغیر وابسته‌است. دو شیوه اصلی از مطالعات آماری تصادفی وجود دارد: مطالعات تجربی و مطالعات مشاهداتی. در هر دو نوع از این مطالعات، اثر تغییرات در یک متغیر (یا متغیرهای) غیر وابسته روی رفتار متغیرهای وابسته مشاهده می‌شود. اختلاف بین این دو شیوه درچگونگی مطالعه‌ای است که عملاً هدایت می‌شود. یک مطالعه تجربی در بردارنده روش‌های اندازه‌گیری سیستم تحت مطالعه‌است که سیستم را تغییر می‌دهد و سپس با استفاده از روش مشابه اندازه‌گیری‌های اضافی انجام می‌دهد تا مشخص سازد که آیا تغییرات انجام شده، مقادیر شاخص‌ها را تغییر می‌دهد یا خیر. در مقابل یک مطالعه نظری، مداخلات تجربی را در بر نمی‌گیرد. در عوض داده ها جمع‌آوری می‌شوند و روابط بین پیش بینی‌ها و جواب بررسی می‌شوند.

یک نمونه از مطالعه تجربی، مطالعات Hawthorne مشهور است که تلاش کرد تا تغییرات در محیط کار را در کمپانی الکتریک غربی Howthorne بیازماید. محققان علاقه‌مند بودند که آیا افزایش نور می‌تواند کارایی را در کارگران خط تولید افزایش دهد. محققان ابتدا کارایی را در کارخانه اندازه‌گیری کردند و سپس میزان نور را در یک قسمت از کارخانه تغییر دادند تا مشاهده کنند که آیا تغییر در نور می‌تواند کارایی را تغییر دهد. به واسطه خطا در اقدامات تجربی، به ویژه فقدان یک گروه کنترل محققاتی در حالی که قادر نبودند آنچه را که طراحی کرده بودند، انجام دهند قادر شدند تا محیط را با شیوه Hawthorne آماده سازند. یک نمونه از مطالعه مشاهداتی، مطالعه ایست که رابطه بین سیگار کشیدن و سرطان ریه را بررسی می‌کند. این نوع از مطالعه به طور اختصاصی از شیوه‌ای استفاده می‌کند تا مشاهدات مورد علاقه را جمع‌آوری کند و سپس تجزیه و تحلیل آماری انجام دهد. در این مورد، محققان مشاهدات افراد سیگاری و غیر سیگاری را جمع‌آوری می‌کنند و سپس به تعداد موارد سرطان ریه در هر دو گروه توجه می‌کنند.

احتمالات

طور ساده، احتمالات (به انگلیسی: Probability) به شانس وقوع یک حادثه گفته می‌شود.

احتمال معمولاً مورد استفاده برای توصیف نگرش ذهن نسبت به گزاره هایی است که ما از حقیقت انها مطمئن نیستیم. گزاره های مورد نظر معمولاً از فرم “آیا یک رویداد خاص رخ می دهد؟” و نگرش ذهن ما از فرم “چقدر اطمینان داریم که این رویداد رخ خواهد داد؟” است. میزان اطمینان ما، قابل توصیف به صورت عددی می باشد که این عدد مقداری بین ۰ و ۱ را گرفته و آن را احتمال می نا میم. هر چه احتمال یک رویداد بیشتر باشد، ما مطمئن تر خواهیم بود که آن رویداد رخ خواهد داد. درواقع میزان اطمینان ما از اینکه یک واقعه (تصادفی) اتفاق خواهد افتاد.
ظریهٔ احتمالات به شاخه‌ای از ریاضیات گویند که با تحلیل وقایع تصادفی سروکار دارد.

مانند دیگر نظریه ها، نظریه احتمال نمایشی از مفاهیم احتمال به صورت شرایط صوری (فرمولی) است – شرایطی که می‌تواند به طور جدا از معنای خود در نظر گرفته شود. این فرمولبندی صوری توسط قوانین ریاضی و منطق دستکاری، ونتیجه های حاصله، تفسیر و یا دوباره به دامنه مسئله ترجمه می شوند.

حداقل دو تلاش موفق برای به بصورت فرمول دراوردن احتمال وجود دار : فرمولاسیون کولموگروف و فرمولاسیون کاکس. در فرمولاسیون کولموگروف (نگاه کنیدبه )، مجموعه ها به عنوان واقعه و احتمالات را به عنوان میزانی روی یک سری از مجموعه ها تفسیرمی کنند. در نظریه کاکس، احتمال به عنوان یک اصل (که هست، بدون تجزیه و تحلیل بیشتر) و تاکید بر روی ساخت یک انتساب سازگار از مقادیر احتمال برای گزاره ها است. در هر دو مورد، قوانین احتمال یکی هستند مگر برای جزئیات تکنیکی مربوط به آنها.

روشهای دیگری نیز برای کمی کردن میزان عدم قطعیت، مانند نظریه Dempster-Shafer theory یا possibility theory وجود دارد ، اما آن ها به طور اساسی با آنچه گفته شد، تفاوت دارند و با درک معمول از قوانین احتمال سازگار نیستند.
مطالعه علمی احتمال، توسعه ای مدرن است. قمارنشان می دهد که علاقه به ایده های تعیین کمیت برای احتمالات به هزاران سال می رسد، اما توصیفات دقیق ریاضی خیلی دیرتر به وجود آمد. دلایلی البته وجود دارد که توسعه ریاضیات احتمالات را کند می کند. در حالی که بازی های شانس انگیزه ای برای مطالعه ریاضی احتمال بودند، اما مسائل اساسی هنوز هم تحت تاثیر خرافات قماربازان پوشیده می شود.

ریاضی عمومی-مجموعه کامل

نگاه کوتاه

ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد

صفحه‌ای از کتاب خوارزمی

ریاضیات (در قدیم[نیازمند منبع]، هم‌چنین: اِنگارِش[۱]) را بیش‌تر دانش بررسی کمیتها و ساختارها و فضا و دگرگونی (تغییر) تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم (دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است). با اینکه ریاضیات از علوم طبیعی به شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند بیشتر از دانش‌های طبیعی به‌ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کنند، به‌طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی ریاضی‌دانان گاه به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها می‌پردازند.

تاریخچه

مصریان باستان، بیش از ۵ هزار سال پیش، برای اندازه‌گیری و نقشه‌برداری زمین و ساختن اهرام با دقت بسیار بالا، از حساب و هندسه استفاده می‌کردند. علم حساب با اعداد و محاسبه سر و کار دارد. در حساب، چهار عمل اصلی عبارتند از: جمع، تفریق، ضرب و تقسیم. هندسه علم مطالعه خط‌ها، زاویه‌ها، شکل‌ها، و حجم‌ها است. یونانی‌هایی چون اقلیدس، حدود ۲۵۰۰ سال قبل، بیشتر قوانین اصلی هندسه (قضایای هندسه) را تعیین کردند. جبر نوعی خلاصه‌نویسی ریاضیات است که در آن برای نشان دادن کمّیت‌های نامعلوم، از علائمی چون x و y استفاده می‌شود. این علم را نیز دانشمندان ایرانی، حدود ۱۲۰۰ سال قبل توسعه دادند. حساب، هندسه و جبر، پایه‌های ریاضیات هستند.

ریاضیات نوعی زبان علمی است. مهندسان، فیزیکدانان، و سایر دانشمندان، همگی از ریاضیات در کارهایشان استفاده می‌کنند. سایر کارشناسان که به مطالعه اعداد، کمّیت‌ها، شکل‌ها و فضا به‌شکل محض علاقه دارند، ریاضیات محض (غیرکاربردی) را به کار می‌گیرند. نظریه اعداد که شامل مطالعه اعداد درست و نحوه عمل آنهاست، شاخه‌ای از ریاضیات محض به شمار می‌آید. در دنیای جدید، ریاضیات یکی از عناصر کلیدی علوم الکترونیک و رایانه به‌شمار می‌رود.

کمیت

مجموعه، رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد حسابی، اعداد صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگان‌ها، هشت‌گان‌ها، شانزدگان‌ها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)، اعداد فوق حقیقی (Hyperreal number)، اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابت‌های ریاضی، پایه

ساختار

Elliptic curve simple.png Group diagram d6.svg
جبر مجرد نظریه اعداد نظریه گروه‌ها
Torus.jpg MorphismComposition-01.png Lattice of the divisibility of 60.svg
توپولوژی نظریه مدول‌ها نظریه ترتیب

جبر مجرد، نظریه اعداد، هندسه جبری، نظریه گروه‌ها، مونوئیدها، آنالیز ریاضی، آنالیز تابعی، توپولوژی، جبر خطی، نظریه گراف، جبر عمومی، نظریه مدول‌ها، نظریه ترتیب، [[نظ

فضا

Torus.jpg Pythagorean.svg Taylorsine.svg Osculating circle.svg Koch curve.svg
توپولوژی هندسه مثلثات هندسه دیفرانسیل هندسه برخال‌ها

توپولوژی، هندسه، مثلثات، هندسه جبری، هندسه دیفرانسیل، توپولوژی دیفرانسیل، توپولوژی جبری، جبر خطی، هندسه برخال‌ها، متری

تغییر

36 \div 9 = 4 Integral as region under curve.png Vectorfield jaredwf.png \int 1_S\,d\mu=\mu(S)
حساب حسابان حساب برداری آنالیز ریاضی
\frac{d^2}{dx^2} y = \frac{d}{dx} y + c Limitcycle.jpg LorenzAttractor.png
معادلات دیفرانسیل سیستم‌های دینامیکی نظریه آشوب

حساب، حسابان، حساب برداری، آنالیز ریاضی، معادلات دیفرانسیل، سیستم‌های دینامیکی، نظریه آشوب، فهرست تابع‌ها

پایه‌ها و روش‌های ریاضیات

فلسفه ریاضیات، شهودگرایی، ساخت‌گرائی، مبانی ریاضیات، نظریه مجموعه‌ها، منطق نمادی، نظریه مدل، نظریه رسته‌ها، منطق ریاضی، ریاضیات معکوس، جدول نمادهای ریاضی

ریاضیات گسسته

[1,2,3][1,3,2]
[2,1,3][2,3,1]
[3,1,2][3,2,1]
Venn A intersect B.svg DFAexample.svg Caesar3.svg 6n-graf.svg
ترکیبیات نظریه شهودی مجموعه‌ها نظریه رایانش رمزنگاری نظریه گراف

ترکیبیات، نظریه شهودی مجموعه‌ها، نظریه رایانش، رمزنگاری، نظریه گراف

ریاضیات کاربردی

فیزیک ریاضی، مکانیک، مکانیک سیالات، آنالیز عددی، بهینه‌سازی، احتمالات، آمار، اقتصاد ریاضی، ریاضیات مالی، نظریه بازی‌ها، ریاضیات زیستی، رمزنگاری، نظریه اطلاعات

گفتاورد (نقل قول)

برتراند راسل زمانی که دربارهٔ روش بُنداشتی (اصل موضوعی) سخن می‌گفت که در آن برخی ویژگی‌های یک ساختار (که چیزی از آن نمی‌دانیم) فرض می‌شود و پیامدهای این فرض از راه منطق نتیجه‌گیری می‌شود گفت:

ریاضیات را می‌توان رشته‌ای تعریف کرد که در آن نه معلوم است از چه سخن می‌گوییم و نه می‌دانیم آنچه می‌گوییم صحت دارد.

ما در ریاضیات مطالب را نمی‌فهمیم، بلکه تنها به آنها عادت می‌کنیم.

ریاضیات -مجموعه ها و توابع مثلثاتی

نگاه کوتاه

ریاضیات

از ویکی‌پدیا، دانشنامهٔ آزاد

صفحه‌ای از کتاب خوارزمی

ریاضیات (در قدیم[نیازمند منبع]، هم‌چنین: اِنگارِش[۱]) را بیش‌تر دانش بررسی کمیتها و ساختارها و فضا و دگرگونی (تغییر) تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم (دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است). با اینکه ریاضیات از علوم طبیعی به شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند بیشتر از دانش‌های طبیعی به‌ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کنند، به‌طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی ریاضی‌دانان گاه به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها می‌پردازند.

تاریخچه

مصریان باستان، بیش از ۵ هزار سال پیش، برای اندازه‌گیری و نقشه‌برداری زمین و ساختن اهرام با دقت بسیار بالا، از حساب و هندسه استفاده می‌کردند. علم حساب با اعداد و محاسبه سر و کار دارد. در حساب، چهار عمل اصلی عبارتند از: جمع، تفریق، ضرب و تقسیم. هندسه علم مطالعه خط‌ها، زاویه‌ها، شکل‌ها، و حجم‌ها است. یونانی‌هایی چون اقلیدس، حدود ۲۵۰۰ سال قبل، بیشتر قوانین اصلی هندسه (قضایای هندسه) را تعیین کردند. جبر نوعی خلاصه‌نویسی ریاضیات است که در آن برای نشان دادن کمّیت‌های نامعلوم، از علائمی چون x و y استفاده می‌شود. این علم را نیز دانشمندان ایرانی، حدود ۱۲۰۰ سال قبل توسعه دادند. حساب، هندسه و جبر، پایه‌های ریاضیات هستند.

ریاضیات نوعی زبان علمی است. مهندسان، فیزیکدانان، و سایر دانشمندان، همگی از ریاضیات در کارهایشان استفاده می‌کنند. سایر کارشناسان که به مطالعه اعداد، کمّیت‌ها، شکل‌ها و فضا به‌شکل محض علاقه دارند، ریاضیات محض (غیرکاربردی) را به کار می‌گیرند. نظریه اعداد که شامل مطالعه اعداد درست و نحوه عمل آنهاست، شاخه‌ای از ریاضیات محض به شمار می‌آید. در دنیای جدید، ریاضیات یکی از عناصر کلیدی علوم الکترونیک و رایانه به‌شمار می‌رود.

کمیت

مجموعه، رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد حسابی، اعداد صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگان‌ها، هشت‌گان‌ها، شانزدگان‌ها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)، اعداد فوق حقیقی (Hyperreal number)، اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابت‌های ریاضی، پایه

ساختار

Elliptic curve simple.png Group diagram d6.svg
جبر مجرد نظریه اعداد نظریه گروه‌ها
Torus.jpg MorphismComposition-01.png Lattice of the divisibility of 60.svg
توپولوژی نظریه مدول‌ها نظریه ترتیب

جبر مجرد، نظریه اعداد، هندسه جبری، نظریه گروه‌ها، مونوئیدها، آنالیز ریاضی، آنالیز تابعی، توپولوژی، جبر خطی، نظریه گراف، جبر عمومی، نظریه مدول‌ها، نظریه ترتیب، [[نظ

فضا

Torus.jpg Pythagorean.svg Taylorsine.svg Osculating circle.svg Koch curve.svg
توپولوژی هندسه مثلثات هندسه دیفرانسیل هندسه برخال‌ها

توپولوژی، هندسه، مثلثات، هندسه جبری، هندسه دیفرانسیل، توپولوژی دیفرانسیل، توپولوژی جبری، جبر خطی، هندسه برخال‌ها، متری

تغییر

36 \div 9 = 4 Integral as region under curve.png Vectorfield jaredwf.png \int 1_S\,d\mu=\mu(S)
حساب حسابان حساب برداری آنالیز ریاضی
\frac{d^2}{dx^2} y = \frac{d}{dx} y + c Limitcycle.jpg LorenzAttractor.png
معادلات دیفرانسیل سیستم‌های دینامیکی نظریه آشوب

حساب، حسابان، حساب برداری، آنالیز ریاضی، معادلات دیفرانسیل، سیستم‌های دینامیکی، نظریه آشوب، فهرست تابع‌ها

پایه‌ها و روش‌های ریاضیات

فلسفه ریاضیات، شهودگرایی، ساخت‌گرائی، مبانی ریاضیات، نظریه مجموعه‌ها، منطق نمادی، نظریه مدل، نظریه رسته‌ها، منطق ریاضی، ریاضیات معکوس، جدول نمادهای ریاضی

ریاضیات گسسته

[1,2,3][1,3,2]
[2,1,3][2,3,1]
[3,1,2][3,2,1]
Venn A intersect B.svg DFAexample.svg Caesar3.svg 6n-graf.svg
ترکیبیات نظریه شهودی مجموعه‌ها نظریه رایانش رمزنگاری نظریه گراف

ترکیبیات، نظریه شهودی مجموعه‌ها، نظریه رایانش، رمزنگاری، نظریه گراف

ریاضیات کاربردی

فیزیک ریاضی، مکانیک، مکانیک سیالات، آنالیز عددی، بهینه‌سازی، احتمالات، آمار، اقتصاد ریاضی، ریاضیات مالی، نظریه بازی‌ها، ریاضیات زیستی، رمزنگاری، نظریه اطلاعات

گفتاورد (نقل قول)

برتراند راسل زمانی که دربارهٔ روش بُنداشتی (اصل موضوعی) سخن می‌گفت که در آن برخی ویژگی‌های یک ساختار (که چیزی از آن نمی‌دانیم) فرض می‌شود و پیامدهای این فرض از راه منطق نتیجه‌گیری می‌شود گفت:

ریاضیات را می‌توان رشته‌ای تعریف کرد که در آن نه معلوم است از چه سخن می‌گوییم و نه می‌دانیم آنچه می‌گوییم صحت دارد.

ما در ریاضیات مطالب را نمی‌فهمیم، بلکه تنها به آنها عادت می‌کنیم.