آمار و احتمالات

نگاه کوتاه

آمار

به مجموعهٔ داده‌های عددی مربوط به یک موضوع (معمولاً مهم)، مانند جمعیت، متوفیات، میزان تجارت داخلی یا خارجی، دما یا بارش ماهیانه و غیر گفته می‌شود. آمار را باید علم و عمل استخراج، بسط، و توسعهٔ دانشهای تجربی انسانی با استفاده از روش‌های گردآوری، تنظیم، پرورش، و تحلیل دادههای تجربی (حاصل از اندازه‌گیری و آزمایش) دانست. زمینه‌های محاسباتی و رایانه‌ای جدیدتری همچون یادگیری ماشینی، و کاوش‌های ماشینی در داده‌ها، در واقع، امتداد و گسترش دانش گسترده و کهن از آمار به عهد محاسبات نو و دوران اعمال شیوه‌های ماشینی در همه‌جا می‌باشد. علم آمار، علم فن فراهم کردن داده‌های کمّی و تحلیل آن‌ها به منظور به دست آورن نتیایجی که اگرچه احتمالی است، اما در خور اعتماد است.

در صورتی که شاخه‌ای علمی مد نظر نباشد، معنای آن، داده‌هایی به‌شکل ارقام و اعداد واقعی یا تقریبی است که با استفاده از علم آمار می‌توان با آن‌ها رفتار کرد و عملیات ذکر شده در بالا را بر آن‌ها انجام داد. بیشتر مردم با کلمه آمار به مفهومی که برای ثبت و نمایش اطلاعات عددی به کار می‌رود آشنا هستند؛ ولی این مفهوم منطبق با موضوع اصلی مورد بحث آمار نیست. آمار عمدتاً با وضعیتهایی سر و کار دارد که در آنها وقوع یک پیشامد به طور حتمی قابل پیش بینی نیست. اسنتاجهای آماری غالباً غیر حتمی اند، زیرا مبتنی بر اطلاعات ناکاملی هستند. در طول چندین دهه آمار فقط با بیان اطلاعات و مقادیر عددی درباره اقتصاد، جمعیت‌شناسی و اوضاع سیاسی حاکم در یک کشور سر و کار داشت. حتی امروز بسیاری از نشریات و گزارشهای دولتی که توده‌ای از آمار و ارقام را در بردارند معنی اولیه کلمه آمار را در ذهن زنده می‌کنند. اکثر افراد معمولی هنوز این تصویر غلط را درباره آمار دارند که آن را منحصر به ستونهای عددی سرگیجه آور و گاهی یک سری شکلهای مبهوت کننده می‌دانند؛ بنابراین، یادآوری این نکته ضروری است که نظریه و روشهای جدید آماری از حد ساختن جدولهای اعداد و نمودارها بسیار فراتر رفته‌اند. آمار به عنوان یک موضوع علمی، امروزه شامل مفاهیم و روشهایی است که در تمام پژوهشهایی که مستلزم جمع‌آوری داده‌ها به وسیله یک فرایند آزمایش و مشاهده و انجام استنباط و نتیجه‌گیری به وسیله تجزیه و تحلیل این داده‌ها هستند اهمیت بسیار دارند.

علم آمار، مبتنی است بر دو شاخه آمار توصیفی و آمار استنباطی. در آمار توصیفی با داشتن تمام اعضا جامعه به بررسی خصوصیت‌های آماری آن پرداخته می‌شود در حالی که در آمار استنباطی با بدست آوردن نمونه‌ای از جامعه که خصوصیات اصلی جامعه را بیان می‌کند در مورد جامعه استباط آماری انجام می‌شود. در نظریهٔ آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریهٔ احتمالات مدل‌سازی می‌شوند. در این علم، مطالعه و قضاوت معقول در بارهٔ موضوع‌های گوناگون، بر مبنای یک نمونه انجام می‌شود و قضاوت در مورد یک فرد خاص، اصلاً مطرح نیست.

از جملهٔ مهم‌ترین اهداف آمار، می‌توان تولید «بهترین» اطّلاعات از داده های موجود و سپس استخراج دانش از آن اطّلاعات را ذکر کرد. به همین سبب است که برخی از منابع، آمار را شاخه‌ای از نظریه تصمیم‌ها به شمار می‌آورند.

از طرف دیگر می‌توان آن را به دو بخش آمار کلاسیک و آمار بیز تقسیم‌بندی کرد. در آمار کلاسیک، که امروزه در دانشگاه‌ها و دبیرستان‌ها تدریس می‌گردد، ابتدا آزمایش و نتیجه را داریم و بعد بر اساس آن‌ها فرض‌ها را آزمون می‌کنیم. به عبارت دیگر ابتدا آزمایش انجام می‌شود و بعد فرض آزمون می‌گردد. در آمار بیزی ابتدا فرض در نظر گرفته می‌شود و داده‌ها با آن مطابقت داده می‌شوند به عبارت دیگر در آمار بیزی یک پیش توزیع داریم-توزیع پیشین- و بعد از مطالعه داده‌ها و برای رسیدن به آن توزیع پیشین، توزیع پسین را در نظر می‌گیریم.
مطالعات تجربی و مشاهداتی هدف کلی برای یک پروژه تحقیقی آماری، بررسی حوادث اتفاقی بوده و به ویژه نتیجه‌گیری روی تأثیر تغییرات در ارزش شاخص‌ها یا متغیرهای غیر وابسته روی یک پاسخ یا متغیر وابسته‌است. دو شیوه اصلی از مطالعات آماری تصادفی وجود دارد: مطالعات تجربی و مطالعات مشاهداتی. در هر دو نوع از این مطالعات، اثر تغییرات در یک متغیر (یا متغیرهای) غیر وابسته روی رفتار متغیرهای وابسته مشاهده می‌شود. اختلاف بین این دو شیوه درچگونگی مطالعه‌ای است که عملاً هدایت می‌شود. یک مطالعه تجربی در بردارنده روش‌های اندازه‌گیری سیستم تحت مطالعه‌است که سیستم را تغییر می‌دهد و سپس با استفاده از روش مشابه اندازه‌گیری‌های اضافی انجام می‌دهد تا مشخص سازد که آیا تغییرات انجام شده، مقادیر شاخص‌ها را تغییر می‌دهد یا خیر. در مقابل یک مطالعه نظری، مداخلات تجربی را در بر نمی‌گیرد. در عوض داده ها جمع‌آوری می‌شوند و روابط بین پیش بینی‌ها و جواب بررسی می‌شوند.

یک نمونه از مطالعه تجربی، مطالعات Hawthorne مشهور است که تلاش کرد تا تغییرات در محیط کار را در کمپانی الکتریک غربی Howthorne بیازماید. محققان علاقه‌مند بودند که آیا افزایش نور می‌تواند کارایی را در کارگران خط تولید افزایش دهد. محققان ابتدا کارایی را در کارخانه اندازه‌گیری کردند و سپس میزان نور را در یک قسمت از کارخانه تغییر دادند تا مشاهده کنند که آیا تغییر در نور می‌تواند کارایی را تغییر دهد. به واسطه خطا در اقدامات تجربی، به ویژه فقدان یک گروه کنترل محققاتی در حالی که قادر نبودند آنچه را که طراحی کرده بودند، انجام دهند قادر شدند تا محیط را با شیوه Hawthorne آماده سازند. یک نمونه از مطالعه مشاهداتی، مطالعه ایست که رابطه بین سیگار کشیدن و سرطان ریه را بررسی می‌کند. این نوع از مطالعه به طور اختصاصی از شیوه‌ای استفاده می‌کند تا مشاهدات مورد علاقه را جمع‌آوری کند و سپس تجزیه و تحلیل آماری انجام دهد. در این مورد، محققان مشاهدات افراد سیگاری و غیر سیگاری را جمع‌آوری می‌کنند و سپس به تعداد موارد سرطان ریه در هر دو گروه توجه می‌کنند.

احتمالات

طور ساده، احتمالات (به انگلیسی: Probability) به شانس وقوع یک حادثه گفته می‌شود.

احتمال معمولاً مورد استفاده برای توصیف نگرش ذهن نسبت به گزاره هایی است که ما از حقیقت انها مطمئن نیستیم. گزاره های مورد نظر معمولاً از فرم “آیا یک رویداد خاص رخ می دهد؟” و نگرش ذهن ما از فرم “چقدر اطمینان داریم که این رویداد رخ خواهد داد؟” است. میزان اطمینان ما، قابل توصیف به صورت عددی می باشد که این عدد مقداری بین ۰ و ۱ را گرفته و آن را احتمال می نا میم. هر چه احتمال یک رویداد بیشتر باشد، ما مطمئن تر خواهیم بود که آن رویداد رخ خواهد داد. درواقع میزان اطمینان ما از اینکه یک واقعه (تصادفی) اتفاق خواهد افتاد.
ظریهٔ احتمالات به شاخه‌ای از ریاضیات گویند که با تحلیل وقایع تصادفی سروکار دارد.

مانند دیگر نظریه ها، نظریه احتمال نمایشی از مفاهیم احتمال به صورت شرایط صوری (فرمولی) است – شرایطی که می‌تواند به طور جدا از معنای خود در نظر گرفته شود. این فرمولبندی صوری توسط قوانین ریاضی و منطق دستکاری، ونتیجه های حاصله، تفسیر و یا دوباره به دامنه مسئله ترجمه می شوند.

حداقل دو تلاش موفق برای به بصورت فرمول دراوردن احتمال وجود دار : فرمولاسیون کولموگروف و فرمولاسیون کاکس. در فرمولاسیون کولموگروف (نگاه کنیدبه )، مجموعه ها به عنوان واقعه و احتمالات را به عنوان میزانی روی یک سری از مجموعه ها تفسیرمی کنند. در نظریه کاکس، احتمال به عنوان یک اصل (که هست، بدون تجزیه و تحلیل بیشتر) و تاکید بر روی ساخت یک انتساب سازگار از مقادیر احتمال برای گزاره ها است. در هر دو مورد، قوانین احتمال یکی هستند مگر برای جزئیات تکنیکی مربوط به آنها.

روشهای دیگری نیز برای کمی کردن میزان عدم قطعیت، مانند نظریه Dempster-Shafer theory یا possibility theory وجود دارد ، اما آن ها به طور اساسی با آنچه گفته شد، تفاوت دارند و با درک معمول از قوانین احتمال سازگار نیستند.
مطالعه علمی احتمال، توسعه ای مدرن است. قمارنشان می دهد که علاقه به ایده های تعیین کمیت برای احتمالات به هزاران سال می رسد، اما توصیفات دقیق ریاضی خیلی دیرتر به وجود آمد. دلایلی البته وجود دارد که توسعه ریاضیات احتمالات را کند می کند. در حالی که بازی های شانس انگیزه ای برای مطالعه ریاضی احتمال بودند، اما مسائل اساسی هنوز هم تحت تاثیر خرافات قماربازان پوشیده می شود.

پاسخ

آدرس پست الکترونیک شما منتشر نخواهد شد علامت گذاری شده اند *
شما میتوانید از کدهای HTML استفاده کنید <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>